
Containerization Readiness
Guide

May 12, 2021

Office of Information Integrity and Access

General Services Administration
Office of Government-wide Policy

Containerization Readiness Guide Page 2

Table of Contents
Purpose 4

Overview of Container Technology
Container Images
Types of Container Technology

4

5
5

Container Management 6

Container Registries 6

Container Orchestration 7

Business Case for Container Orchestration Solutions 7

Container Orchestration Tools 7

Container Monitoring 8

Container Business Value 8

Containerization Limitations 10

Measuring Container Value 10

Complementary Technologies 11

Service Mesh 11

Serverless Computing 11

Edge Computing 12

Infrastructure As Code 12

Application Development and Containers 13

DevOps and DevSecOps 13

GitOps 13

Microservices 13

Common Container Use Cases 14

Priority Use Cases 14

Non-Priority Use Cases 15

Container Challenges 16

Security 16

Workforce 18

Container Adoption Assessment 19

Container Service Delivery Models 21

Conclusion 22

Appendix 1: Container Transformation Maturity Matrix 24

Appendix 2: Frequently Asked Questions 29

Containerization Readiness Guide Page 3

Appendix 3: Generic Use Case 31

Appendix 4: Case Studies 32

Case Study 1: Cabinet-Level Federal Agency Container Journey 32

Case Study 2: Cabinet-level Federal Agency Application Container-based Platform 33
Case Study 3: Cabinet-Level Federal Agency Mobile Application Platform 34

Case Study 4: Cabinet-Level Federal Agency Enterprise-wide Container Journey 36

Appendix 5: Example of the Operator Pattern 36

Appendix 6: Additional Resources 38

Security Resources 38

Notional Concept of Container Architecture Diagram 39

Additional Resources List 40

Containerization Readiness Guide Page 4

Purpose
As the Federal Government continues to adopt increasingly cutting-edge technologies and
embrace large changes to existing Information Technology (IT) infrastructure, containers
have become a growing topic of discussion throughout agencies. Some agencies already
have budding containerization practices, other agencies are in the process of preparing for
and building container capabilities and skills, and still others are early in the maturation
process.

This guide provides a basic overview of container technologies to educate agencies that
have limited to no containerization maturity. It will help agencies make informed and
intelligent decisions on adopting container technologies. Intended as a “Container
Readiness Guide,” the reader will first find an overview of container technology and
references to external resources for additional learning to set a baseline of terms,
definitions, and types of technologies.

The guide also contains resources, such as a decision tree, to:
● Assist agencies in determining if they are ready for containers;
● Determine if containers are a true solution to existing challenges; and
● Evaluate if containers are a feasible and cost-effective solution.

Interwoven throughout are case studies, taken from other federal agencies that have
already adopted container technologies. The case studies also provide best practices and
lessons learned for agencies considering the adoption of container technologies.

Any references to vendors throughout the guide do not constitute an endorsement of their
services. While the guide includes descriptions of some services to help inform your
agency’s container journey, the container landscape is vast, quickly evolving, and includes
many services not listed here. Your agency is encouraged to consider all available options.
This document is in no way intended to guide any procurement decisions for your agency,
and is intended to be strictly informational.

Overview of Container Technology
Containers are packages of software services that exist separately and independently
from an existing host infrastructure. Containers consist of all the services required to
operate on the Runtime Environment (RTE). Container environments house the application,
all required dependencies, software libraries, and configuration files. Because container
images hold everything needed for an application, developers do not need to code
applications for new environments and deployment is greatly streamlined. Generally,
applications have multiple containers functioning like isolated, secure building blocks for
the application’s software (Figure 1).

Containerization Readiness Guide Page 5

Figure 1. This schematic illustrates a typical container environment, consisting of
containerized applications, the container engine, host operating system, and the underlying
infrastructure.

Ultimately, containers are appealing to developers because of the technology rapidity,
uniformity, and security that they provide in creating and deploying applications. By
packaging up software code into a container, developers can run the code consistently
across different infrastructures and environments.

Container Images
A container image is the initial building block that contains files needed to run an
application. Images are read-only files that are a “snapshot” of a single point in time.
Containers require an image to exist. Since containers carry their own runtime and
dependencies with them, container images can launch at any instance.

The Open Container Initiative (OCI) was formed to enable the creation of interoperable
tools for building, transporting, and preparing a container image to run. Image Format
Specification defines an OCI Image as consisting of a manifest, an image index (optional), a
set of filesystem layers, and a configuration.

Types of Container Technology
● Mirantis Kubernetes System - Enterprise-ready container platform for building,

configuring, and distributing Docker containers.

https://github.com/opencontainers/image-spec/blob/master/spec.md

Containerization Readiness Guide Page 6

● Kubernetes (k8s) - Open-source container orchestration system. The system consists
of a group of one or more containers that share storage and a local network, known as
Pods.

● Podman - Open-source container engine. Performs the same role as Docker Engine.
Docker and Podman CLI commands follow the same pattern.

● Amazon Web Service (AWS) Elastic Container Service (ECS) - Proprietary, fully-
managed container orchestration service used to run and scale containerized
applications.1 Supports Docker containers.

● Microsoft Azure Kubernetes Service (AKS) - Open-source, fully managed container
orchestration service based on Kubernetes. Supports Docker containers.

Container Management
Container management refers to the complex system and environment that enables
organizations to efficiently and effectively run and operate containers within their existing
IT environment. Containers can run without the implementation of container management
services; however, lack of these services will severely limit scalability. Different solutions
may fit different business cases and needs. The primary elements of container
management include container orchestration, monitoring, security, and governance.2

Use the CNCF Cloud Native Interactive Landscape to explore available industry solutions
and tools for various container needs. Many of the emerging technologies surrounding
container technologies, such as artificial intelligence/machine learning (AI/ML),
Hyperledger, edge, and Internet of Things (IoT), are built based on open-source Linux
Foundation frameworks and tools.

Container Registries
A container registry is a repository or a collection of repositories that store container
images. These images are usually different versions of an application or a service. We
recommend agencies use container registries as they progress in their adoption journey.

Container registries may be public or private, though public registries may not meet the
security requirements for your agency. Docker Hub is a public container repository with
many publicly available and pre-configured container images that can quickly run
applications in Docker containers. Private and hosted registries provide additional security
controls, such as the ability to use multiple authentication methods, vulnerability scanning,
role-based access, and traceability through audit logs. These controls offer your agency a
level of assurance when storing and using containers. Iron Bank is an example of a private
registry run by the USAF that provides the DoD with secure container images at an
enterprise level.

1 Any references to vendors do not constitute an endorsement of their services.
2 Market Guide for Container Management, Gartner

https://landscape.cncf.io/
https://landscape.lfai.foundation/?zoom=150
https://landscape.linuxfoundation.org/
https://landscape.linuxfoundation.org/
https://software.af.mil/dsop/services/

Containerization Readiness Guide Page 7

There are several managed container registries available to federal agencies through
commercial providers.

Container Orchestration
Individually, containers are easy to deploy and maintain. However, the management burden
rises as operations scale and more containers, services, and applications are added. The
need to automate the deployment, networking, and availability of containers becomes
critical at scale.3 Container orchestration is a critical component of overall container
management. In addition to orchestration, a successful container management system also
contains load balancing, networking, schedulers, monitoring, and testing.

Operators are software extensions that help build and manage applications in Kubernetes.
They can automate the packaging, deployment, and management of containerized
applications. By automating an application’s lifecycle, they at once reduce the
management burden, and make processes scalable and standardized. For a comprehensive
list of Operators, visit OperatorHub.io.

When multiple Operators are used, as is commonly the case, an Operator Lifecycle
Manager (OLM) can manage these Operator clusters. An OLM is also known as an
“Operator of Operators.” Appendix 5 illustrates how an Operator of Operators, the Open
Data Hub Operator, may be used to install other Operators.

Business Case for Container Orchestration Solutions
Containers are implemented as their own service. As these business functions grow, so
does the number of containerized services. Each service should have its own integration
and deployment pipeline. Containerized services are subject to frequent deployments.
Consequently, a coordination layer is needed to track which hosts run on each container.
This layer should track the state of containers and the resources available in a cluster.

Container Orchestration Tools
Container orchestration tools help organizations combine individual tools to create a
comprehensive solution. For example, Docker and Kubernetes can work together to create
and manage a modern cloud architecture. Orchestration tools help manage the systems,
such as a specific number of repositories, containers, ports, and data volumes.

Docker is the tool that allows organizations to create containers and run services for
applications in the Docker environment. Kubernetes is the tool that allows organizations to
manage and scale these efforts. While this guide focuses on Docker because it is most
commonly used, Kubernetes supports several container runtimes in addition to Docker,

3 How Docker and Kubernetes Work Together, Pavan Belagatti
https://containerjournal.com/topics/container-ecosystems/how-docker-and-kubernetes-work-together/

https://operatorhub.io/
https://opendatahub.io/
https://opendatahub.io/
https://containerjournal.com/topics/container-ecosystems/how-docker-and-kubernetes-work-together/

Containerization Readiness Guide Page 8

including: containerd, CRI-O, and any implementation of the Kubernetes Container Runtime
Interface (CRI).

Agencies need to build a total solution when preparing to operate with containers at scale.
Industry options for container orchestration tools include but are not limited to:

● Kubernetes (k8s) - Open-source container orchestration system. The system
consists of a group of one or more containers that share storage and a local
network, known as Pods.

● Docker Swarm - Open-source container orchestration platform created by Docker
that manages Docker hosts as a single, virtual host.

Container Monitoring
Containers and containerized applications provide great assistance to users and
developers until issues arise. Agencies need to ensure containerized environments are
continuously monitored to:

● Maintain optimal or close to peak performance
● Proactively identify issues
● Perform maintenance and changes safely
● Lower risk

Multiple aspects of containers can be monitored. How much monitoring depends on
multiple variables such as budget, goals, and acceptable risk. Agencies should consider
each of these variables before exploring the numerous monitoring tools and vendors. The
relationship between distribution and tool-side vendors facilitates a cost-effective and
high-performance solution. See the list of security and compliance tools.

Container Business Value
Containers offer federal agencies a unique opportunity to modernize their current legacy
applications and develop new applications to take advantage of cloud services. They allow
agencies to develop applications quickly, scale rapidly, and efficiently use their valuable
resources. The key benefits of containers are as follows:

Immutable Infrastructure - Immutable infrastructure refers to software or systems that
are never modified and remain in the same state. Containers are a good example of
immutable infrastructure. A container image contains the code to run an application and
provides a “static” element for IT operations teams to work with. The immutable aspect of
the container provides a higher level of confidence for both testing and production.

Quick Application Deployment - Using containers frees developers from the tedious task
of managing multiple configuration environments, supporting libraries, and configurations
from testing to production environments. Containers can be created once and used

https://landscape.cncf.io/card-mode?category=security-compliance&grouping=category
https://landscape.cncf.io/card-mode?category=security-compliance&grouping=category

Containerization Readiness Guide Page 9

multiple times without additional effort. Through containers, developers can focus on
application deployments rather than maintaining supporting configurations. The template-
oriented nature of containers allows expeditious deployments with reliability and
consistency across multiple environments. Rather than designing a new architecture for
each new container, developers often reuse existing, reliable Kubernetes patterns to
create the intended container architecture.

Standardization - A container unit has everything the software needs to run (e.g., libraries,
system tools, code, and runtime) and allow for service modularity.

Agility to Scale to Demand - Federal agencies can use a container management system to
cluster multiple containers together, schedule and automate deployments, and manage
containers to meet mission needs and priorities. For example, by using multiple Pods to run
multiple instances of an application, your agency can scale an application horizontally to
support increased demand and reduce the incoming (ingress) and/or outgoing (egress)
traffic from a single, overloaded Pod.

Optimized Compute Resources - Unlike virtual machines (VMs), multiple containers can run
on a single operating system (OS) due to their lightweight nature, and their ability to
quickly execute and maintain a consistent runtime model.4 Given these benefits, the right
tooling to help manage container optimization and efficiency can translate into significant
resource optimization to organizations. Please refer to the CNCF Cloud Native Interactive
Landscape for different types of optimization tools.

Improved Security - Containers can provide improved security through the use of additional
tools and services. Potential benefits of the use of container security tools and services
include:5

● Transparency - Containers are typically easier to inspect allowing a greater
understanding of its continents compared to traditional VMs.

● Security Isolation - Deconstruction of applications into microservices allows
identification and resolution of vulnerabilities without affecting the entire
application.

● Reduced Attack Surfaces - A focus on securing the application running inside the
container reduces the attack surface. Alternatively, on a virtual service, agencies
must secure the host server, the virtual server, and application itself.

● Updates - Update containers in a centralized repository and easily deploy into a
production environment. Quickly disseminate patches from a central repository.

4 https://www.cloudops.com/blog/docker-and-kubernetes-what-is-the-value-of-containerization/
5 https://containerjournal.com/features/security-benefits-docker-containers/

https://landscape.cncf.io/
https://landscape.cncf.io/
https://www.cloudops.com/blog/docker-and-kubernetes-what-is-the-value-of-containerization/
https://containerjournal.com/features/security-benefits-docker-containers/

Containerization Readiness Guide Page 10

● Consistent Environment - Containers’ ability to provide a consistent environment
helps ensure that the containerized application remains secure because the
environment variables are kept uniform prior to and during production. This
uniformity, called environment parity, is a notable value of Docker.

Agencies should still follow good security practices and hygiene, and adhere to federal
security guidelines and requirements, as outlined in the Security section. They should not
expect improved security from adopting containers alone.

Containerization Limitations
Containerization strategy pays off for modern application systems and middle tier
infrastructure services that are loosely coupled and where “build once and deploy many” is
being employed to combat configuration drift. However, in the case of A) legacy
infrastructure where complex middleware systems with tightly coupled interdependent
sub systems and B) monolithic applications, the cost outweighs the benefits. In such cases,
it is recommended to optimize infrastructure and adopt application architecture that lends
itself to reap containerization benefits. Another consideration is the complexity of
orchestration and change management containerization required for both the team’s
workflow and tooling to implement it successfully in an enterprise.

Measuring Container Value
As with all IT efforts, successful value measurement requires equal balance between
benefit and cost measurement.

Key benefits to measure container value can include:
● Developer productivity
● Agile Continuous Integration/Continuous Development (CI/CD) environment
● Infrastructure gain
● Reduced operational overhead

Key costs to measure container return on investment (ROI) can include:
● CaaS/PaaS subscription/licenses
● Infrastructure acquisition and upgrades
● Staff training and hiring
● Rollout/implementation costs

Creating a clear cut and complete value proposition for executives or project managers
typically requires a creative approach from IT teams. An example is provided below to get
started:

One custom methodology to assess value for containers could assess how much start-
up time, overhead, and coding time it would take to move an application to a new VM

Containerization Readiness Guide Page 11

environment and compare it to how long and how much time the team would need to
move a container to a new environment. The time saved would be a proxy measurement
for value, as saved employee times means employees can be working on other, higher-
value projects.

Complementary Technologies
Several types of complementary technologies can work together to improve containers’
functionality. These technologies can improve optimization, management, deployment, or
scaling of containers. View these technologies as key add-ons for containers.

Service Mesh
A service mesh is a layer of infrastructure responsible for communication between multiple
services and the context of a container architecture. It manages data-sharing and
communication between various microservices residing in multiple containers, and allows
for east-west traffic enablement (i.e., data flow between devices within a given data
center).

In a more complex container environment, whether due to increasing numbers of
microservices or unpredictable traffic patterns, interactions between the containers can be
challenging. Here, the service mesh plays a critical role. Identifying performance
bottlenecks, faults, and traffic flow would be challenging without a system that
interconnects the architecture. In addition to connecting containers, agencies can monitor
and secure container clusters. Add-on open-source solutions, such as Prometheus, allow
for transparency and metrics. Native service mesh solutions can help secure traffic through
policy restrictions.

Several open-source service mesh products are available on the market for Kubernetes,
such as Istio and Linkerd, along with other commercially available products.

Serverless Computing
Serverless computing is an application development approach that employs computing
power on-demand/as needed. Serverless computing allows development teams to focus on
writing code functions to deploy in the serverless computing environment. Instead of a VM,
the computing power of serverless comes into existence as needed and then disappears
immediately after use. In other words, the server will only run as computing power is
triggered. This reduces costs by running servers for a much shorter time (notably in
comparison to containers, which require a maintained host location).

Relative to serverless computing, containers are also more difficult to monitor at scale. As
applications grow, more containers are added, and their scattered/distributed nature
makes monitoring them significantly more difficult. Despite these setbacks, containers are

Containerization Readiness Guide Page 12

highly flexible and portable. Serverless computing will not work well with long-running
applications due to the limited time frame.

Edge Computing
Edge computing allows for the use of edge containers. These containers are located as
close as possible to the source of data to reduce the latency in executing an application.
Edge containers stand in contrast to cloud containers. Cloud containers exist within a
centralized cloud that can be far away from the end user’s location, thus producing latency
issues. On the other hand, edge computing networks have more extensive networks that
require more secure network policies. Additionally, using edge containers rather than cloud
containers offers a value proposition, as edge containers offload processing power from
the cloud. Please refer to LF Edge Interactive Landscape to explore available industry
solutions and tools for various edge requirements.

Infrastructure As Code
Infrastructure as code (IaC) is an approach to managing a technology stack with software
rather than hardware. IaC can be used to provision cloud systems and to virtualize different
kinds of software environments and can be automated, freeing up teams from manual
infrastructure management. IaC can also minimize configuration drift through effective
detection and response, ensuring consistency of configurations and reducing human error
that may in turn lead to runtime errors or compromise security.

For example, as a ubiquitous framework for IaC, HashiCorp Terraform enables teams to
describe and automate provisioning of cloud infrastructure resources across different
cloud platforms. More commonly, IaC frameworks are only compatible with the platforms
upon which they were developed, as in the case of AWS CloudFormation.

IaC and containers work together when developing applications deployed to the cloud.
Once deployed to the cloud, the container image alone does not describe the full
application. Sharing a container image with others does not mean that someone else can
easily run the application in the cloud, because they would still need to recreate all the
infrastructure around the image. Rather, the complete application is best described with a
combination of the container image and an IaC template containing all this configuration.

The automation of infrastructure provisioning for microservices has freed developers from
manually performing tasks for routine operations and processes. Both microservices
architectures and IaC are key best practices for what are called "Modern Applications."

https://landscape.lfedge.org/

Containerization Readiness Guide Page 13

Application Development and Containers

DevOps and DevSecOps
DevOps, or the combination of software development and operations, relies heavily on
implementing strong version control practices along the software development and
delivery lifecycle. DevSecOps is the practice of implementing security best practices at all
points in the DevOps cycle, making it a shared responsibility of owners at every stage.

Containers support DevOps and DevSecOps by allowing for the rapid scaling of security
features along with dispersed development cycles. Development teams can duplicate
secure container images for each new version, rather than rely on the capacity of the
security team to configure and secure each new development environment.

GitOps
GitOps synthesizes Git, a distributed version control system to manage source code, also
known as Git, with DevOps. It relies on a Git repository for applications, in tandem with an
automated process, or agent, to ensure accurate execution of source code. Moreover,
because Kubernetes relies on a set of facts, or declarations, in Git, GitOps can serve as the
operating model of a Kubernetes production environment.

The benefits of GitOps include faster development and deployment, shortened meantime
to recovery (MTTR), and reduced attack surfaces. However, scaling GitOps in a larger
agency with many environments and applications means an increase in the number of Git
repositories, which developers and operations staff may struggle to manage. Agencies
must determine if the benefits of this approach outweigh the costs.

Microservices
One benefit of container utilization is the improved ability to implement microservices.
Microservices involve isolating individual application functions to operate as independent
services. Each function can be updated or scaled without impacting service delivery for end
users, making applications easier to scale and faster to develop. By distributing these
functions rather than keeping them in a centralized database, the entire technology stack
becomes more agile and service delivery continuity improves. Building an architecture for
microservices that scales and takes advantage of the service delivery benefits typically
requires the use of containers, which help keep operational expenses low in the cloud
environment.

Microservices architectures share characteristics—automated deployment, intelligence in
the endpoints, and decentralized control of languages and data—that can expand business
capabilities.

Containerization Readiness Guide Page 14

Software is composed of small, independent microservices that communicate with one
another through an intermediate set of functions and procedures, collectively known as an
Application Programming Interface (API). Containers and microservices complement each
other but can exist without each other. Containers function most closely to virtual
operating environments.

Common Container Use Cases

Figure 2. Various use cases for containers have different initial investment and complexity
concerns but can develop better agility and long-term cost effectiveness over time.

Priority Use Cases
1. Develop New Container-Native Applications

Starting in a container-native setting is the highest priority and most self-
explanatory of the use cases. When building new applications, agencies should
consider building a container-native application, as this is the most resource-
efficient time to do so.

● Optimize Support for Microservices Architectures - Microservices
architectures are modular and are distributed across environments. Containers

Containerization Readiness Guide Page 15

enhance the flexibility that microservices architectures need to handle scaling
and deployment, as compared to traditional instances.6

2. Rebuild Existing Applications

Organizations, particularly government agencies, use legacy systems and
applications that have withstood the test of time. Unfortunately, this means that
these same legacy systems will not easily migrate into a modern cloud architecture.
When other solutions fail, organizations may need to rebuild applications from the
ground up with built-in container support.7

● Improve and Simplify CI/CD with DevOps Integration - Containers support
DevOps efforts to accelerate development, test, and production cycles within
the CI/CD cycle. The modular and portability aspects of containers allow highly
configurable and synchronized build and development environments.8

3. Refactor Legacy Applications

Organizations can choose to partially or completely refactor existing applications. A
complete refactor typically requires more time and resources, but it can offer better
performance and optimization for existing applications. A partial refactor can allow
organizations to choose a single or multiple pieces of an application's existing
functionality to refactor into containerized microservices, partially improving the
performance of an application at a lower cost and resource point.9

● Simplify Development and Deployment of Highly Repeatable Tasks -
Containers are highly repeatable because their infrastructure and
configuration is uniform. Given how small containers are, they provide
lightning-fast deployment in a repeatable way.10

Non-Priority Use Cases
4. Legacy Application Migration

Containers can be used to make legacy applications more agile to work with and
more cost effective as your agency migrates to the cloud. Since legacy applications
are not cloud native, they require custom configuration in order to run in containers.
The level of technical complexity, cost saving realization, and IT stack agility varies
across configurations.

● “Lift and Shift” Existing Applications - Organizations can use containers to
meet modern development environments requirements, which often rely on
containers to package and deploy applications. Using containers to “lift and
shift” applications allows organizations to skip time-consuming code

6 https://www.netapp.com/devops-solutions/what-are-containers/
7 Ibid.
8 Ibid.
9 Ibid.
10 Ibid.

https://www.netapp.com/devops-solutions/what-are-containers/

Containerization Readiness Guide Page 16

rewriting processes and easily move applications into a modern cloud
architecture. Although “lift and shift” is simple to implement, organizations
typically are not able to harness all the native aspects of the cloud
architecture/platform.11

Container Challenges

Security
The use of containers provides inherent security advantages and challenges that your
agency should consider in its readiness assessment. The following content should be used
to help guide your agency’s assessment, but it is recommended to consult the NIST
Application Container Security Guide (SP 800-190)12 for more information on best practices
for securing your agency’s container infrastructure and services. Additional security
resources are provided in Appendix 6.

The following are a sample of container-specific challenges. The list is not all-inclusive but
provides an understanding of some of the unique security considerations associated with
containers.

Image Security - The images on which the container is built can have their own security
vulnerabilities. Implement policies requiring periodic image scanning for these
vulnerabilities or non-approved image sources.

Application Layer Sharing - Because application layers are usually shared across
containers within the same application, a compromise to the application can breach
multiple containers at once.

Container Privileges - When containers are given the same privileges as the application
host, breaches into these containers can mean access to the host device. Avoid running
containers with a privileged flag, or implement more intricate security filters to limit OS
capabilities.13

Host Isolation - In addition to heightened privileges, containers can also gain access to the
host if they are misconfigured. Avoid sharing the host network and process namespaces to
guard against breaches due to configuration mishaps.14

Containers run as isolated, distinct processes, but they are not inherently more secure than
VMs. A simple misconfiguration in any part of the container development lifecycle can
compromise the entire system. Security considerations and solutions can be better

11 https://www.netapp.com/devops-solutions/what-are-containers/
12 https://csrc.nist.gov/publications/detail/sp/800-190/final
13 https://docs.docker.com/engine/reference/run/
14 https://www.cloudmanagementinsider.com/5-security-challenges-for-containers-and-their-remedies/

https://www.netapp.com/devops-solutions/what-are-containers/
https://csrc.nist.gov/publications/detail/sp/800-190/final
https://docs.docker.com/engine/reference/run/
https://www.cloudmanagementinsider.com/5-security-challenges-for-containers-and-their-remedies/

Containerization Readiness Guide Page 17

identified by listing out the layers (or stages) of the container development lifecycle and
identifying them at each layer.
Table 1 showcases high-level security mitigation considerations for each layer. NIST
Special Publication 800-90 provides in-depth guidance on securing a container ecosystem,
and agencies should reference this publication to safeguard their container ecosystem.

Table 1. High-level security mitigation considerations

Layer Definition Security Considerations

Network Interconnected systems (both
virtual and physical) that are part
of container creation (e.g., code
and image repository, data
storage, cloud, etc.)

Segmentation, Zero Trust
Network Architecture, Encrypted
communications, Secure Service
Mesh, logging

Host Machine running the OS and
runtime requisite for container
creation and facilitating access
to networked resources

Known-good baselines, security
policies, vulnerability scanning,
multi-factor authentication,
system call restriction,
container/environment isolation,
privilege restrictions, logging

Runtime The underlying infrastructure
that allows the orchestrator to
interact with the OS; consumes
the config.json and root
filesystem

Known-good baselines, security
policies, privilege restrictions,
logging

Orchestrator Dynamically schedules container
workloads within a cluster of
computers; provides a
standardized application
definition file

Cluster policies, API access and
plug-in restrictions, logging

Data The code repository and storage
and maintenance of optimized,
secure images available for
consumption; also, metadata and
application definitions

Container hygiene, version
control, access control, scans for
sensitive items, logging

Cloud Environment that may house
some or all of the container
development stack

Cloud security configurations
scanned, templates

Containerization Readiness Guide Page 18

With Table 1 in mind, agencies can assess their current security maturity when delivering
container-based capabilities. For small- to mid-sized agencies, reliance on a container
distribution platform can be one way to manage security needs in a multi-cloud
environment, because it provides a platform for securely moving between various cloud
vendors’ service environments.

One critical security control your agency should adopt is a service mesh. As noted earlier, a
service mesh provides a dedicated layer for communication between containerized
services. It becomes a comprehensive infrastructure to improve both security and network
management of the container.

A service mesh can also provide policy controls and be deployed with proxy services to
improve security management. One such proxy is the widely used Envoy proxy for cloud
native applications, which is used by most service mesh products. Envoy provides a wide
range of security services in an open-source format.

While smaller agencies could create a separate authentication network before they adopt a
service mesh, they should create security solutions (such as authentications) as they
mature into a service mesh.

Workforce
Containers require employees to become familiar with a new development approach and
tools for implementing containerization effectively. Training is a cost that agencies need to
consider when adopting containers, as employees need to know how to use the
containerization platform that your agency is using, as well as how to redesign applications
for containers. To address workforce challenges, one approach is to pursue a managed
service model for container adoption efforts along with continued operations. There is a
clear lack of skilled specialists in this area, and the quickest path to a mature container
management model is through partnering with companies that specialize in this area.

If your agency decides to develop internal skill sets for container management, there are
several online private companies that offer training at a cost and free publications from
open-source solutions such as Docker, Kubernetes, and their associated open-source
supporting systems. It is recommended that agencies take a measured approach, starting
small with very low complexity deployments and growing as your workforce skill sets grow.

Key roles for successful deployment include:

● Software Engineering
● Platform Engineering and Operations
● Reliability Engineering
● Build and Release Engineering

Containerization Readiness Guide Page 19

● Security Engineering

Container Adoption Assessment
Container adoption happens over time and evolves with your agency’s technical maturity. The

following journey map (Figure 3) shows some overarching stages of container adoption maturity

and the challenges they often entail, which are expanded upon in greater detail in Appendix 1.

Figure 3. Each agency’s containerization maturity journey is unique, and this infographic
provides an overview of the Container Maturity Matrix in Appendix 1.

Containerization Readiness Guide Page 20

Figure 4. This container decision tree provides agencies with a clear series of decision points

that enable simple container readiness and viability assessments.15

As your agency considers containerizing its applications, check how ready it is to transition
to containers, as well as whether or not containers are the best solution. Please refer to the
decision flow chart (Figure 4) to assess your agency’s readiness and viability.

15 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 21

Container Service Delivery Models
Table 2 shows recommended container delivery models based on your agency’s purpose in
adopting container technologies and its maturity stage. Note that, for a given maturity
stage, different services may be recommended depending on your agency’s purpose. We
recommend you conduct thorough market research by evaluating FedRAMP approved
providers, as many of them offer container services for each stage of maturity listed below.

Table 2. Recommended container delivery models

Purpose Maturity Stage(s)

Container as a service: Run a container
without provisioning any virtual machines or
adopting a higher-level orchestration
service.

Officially Sanctioned Effort, Limited
Production Migration,

Container PaaS: Allows customers to store
Docker-formatted images. Used to create all
types of container deployments.

Limited Production Migration, Expansion

Orchestration and Kubernetes as a service:
Deploy orchestrated, containerized
applications with Kubernetes.

Limited Production Migration, Expansion,
Enterprise-wide Adoption

Fully managed service: Enable developers
to deploy microservices applications without
managing virtual machines, storage, or
networking.

Expansion, Enterprise-wide Adoption

Full autonomy: Infrastructure as a service. Expansion, Enterprise-wide Adoption

Kubernetes has expanded significantly in the past few years, with many vendors emerging
downstream in the software ecosystem. Upstream Kubernetes,16 based on the latest
version of the Kubernetes source code, ensures that the latest functionality is available and
prevents your agency from being dependent on any particular vendor. For agencies with
small container environments, these benefits may outweigh the costs associated with
independently deploying and managing a container cluster. However, agencies with large
container environments should consider Kubernetes vendors downstream17 from the source
code, because they offer features that make container environments easier to manage,
from load balancing and auto-scaling to monitoring. At the enterprise level, some agencies
may want to utilize a vendor's expertise to protect critical and sensitive IT infrastructure.

16 Upstream Kubernetes is also known as native Kubernetes.
17 Downstream Kubernetes is also known as distributed Kubernetes, software that is built on top of native
Kubernetes and generally offers additional features to ease installation, monitoring, and security.

Containerization Readiness Guide Page 22

The below checklist can help your agency evaluate a downstream Kubernetes service:
1. After installation, provides Day 2 OS patching and enabled supported security

management for the long term
2. Provides an Integrated Development Environment (IDE) support for container

supported developer languages that speed up container adoption such as Quarkus
and Spring

3. Is part of a large ecosystem that includes certified independent software vendors
(ISVs), Operators, Telco Virtual Network Functions (VNFs), and AWS Marketplace,
among others

4. Is FIPS, NIST, FedRAMP, and ISO-27001 certified18
5. Is fully compliant with HIPAA regulations
6. Meets CIS Benchmark security standards
7. Supports and is specific to the underlying OS
8. Supports migration/modernization of applications to cloud native
9. Supports emerging technologies such as edge, IoT, and AI/ML
10. Ensures that the service works well with adjacent, already supported products and

services before release of version updates
11. Answers the below questions in the affirmative:

a. Can I move or synchronize the IaC from on-premise to multi-cloud easily?
b. Are the containers and infrastructure certified and thereby shareable to

other government organizations?

Conclusion
The decision to adopt containers as part of your agency’s cloud environment comes with
unique benefits and challenges for governance, DevOps, security, automation and the
agility to rapidly innovate. The use of containers and microservices can help your agency
modernize its software stack by allowing more rapid scalability, but these benefits should
be weighed against other considerations to decide whether containers are the right choice
to support your agency’s mission. Using this document to better understand the pros and
cons of container adoption can help your agency evaluate its technical maturity and
readiness.

This guide contains resources to help your agency evaluate its readiness for and the
potential value of container adoption. The decision flow chart (Figure 4) is a tool to
determine the readiness and viability of your agency’s transition to containers. The
Container Transformation Maturity Matrix in Appendix 1 details the likely challenges,
proposed solutions, and outcomes associated with each stage of the containerization
maturity journey. To further assist your agency:

● Appendix 2 answers frequently asked questions
● Appendix 3 illustrates a generic use case

18 The list of certifications provided here is not comprehensive. Others may also be relevant to your
agency.

Containerization Readiness Guide Page 23

● Appendix 4 reviews agency case studies and lessons learned
● Appendix 5 provides an example of an Operator of Operators
● Appendix 6 provides supplemental information on security and service meshes

All of these resources are here to help your agency chart the best path forward.

For more information, please contact the Data Center and Cloud Optimization Initiative
(DCCIO) Project Management Office (PMO) at dccoi@gsa.gov.

mailto:dccoi@gsa.gov

Containerization Readiness Guide Page 24

Appendix 1: Container Transformation Maturity Matrix
The following tables detail the likely challenges, proposed solutions, and outcomes
associated with each stage of the containerization maturity journey.

● Table 3: Exploration
● Table 4: Officially Sanctioned Effort
● Table 5: Limited Production Migration
● Table 6: Expansion
● Table 7: Enterprise-wide Adoption

Table 3. Container Transformation Maturity Matrix: Exploration

Typical Agency
Challenge

Recommended Action(s)
to Address Challenges

Outcome of Action

Limited to no DevOps
practices in place; agency
still has some waterfall
principles in application
development processes

Invest in workforce
upskilling and target
specific DevOps skills and
training to integrate with
container efforts

Application development
processes and teams that
are prepared for seamless,
efficient, and effective initial
container adoption

Little to no workforce
knowledge of or experience
with containers

Develop business case for
development modernization
practices

Skilled workforce to support
the initial adoption and
development of
containerized applications
and systems

Low IT modernization budget
or leadership prioritization

Showcase federal case
studies to demonstrate
potential ROI

Potential for increased
leadership support and
necessary funding

Current reliance on physical
hardware with some mix of
VMs

Invest in IT infrastructure
upgrades

Improved infrastructure to
better align with container
adoption infrastructure
needs

Page 25

Table 4. Container Transformation Maturity Matrix: Officially Sanctioned Effort

Typical Agency
Challenge

Recommended Action(s)
to Address Challenges

Outcome of Action

Either a very limited number
of experienced professionals
for container efforts or a
group of lightly trained IT
professionals

Diffuse skills from
experienced professionals
via informal/formal training
and integrate with
governmentwide
communities and training for
low-cost upskilling

Moderately skilled
workforce that is prepared
to integrate key
technologies and cloud
efforts with container
adoption

Lack of organized planning
to scale and implement
containers across the
organization

Develop an initial
transformation roadmap and
series of container-specific
objectives and goals over a
3- to 5-year format

Achievable and detailed plan
with identified resource
needs (people, technology,
infrastructure, and funding)
with clear outcomes and
goals

Pilot efforts for containers
struggle to gain visibility for
leadership or fail to show
quick wins and early ROI

Create a clear-cut ROI
methodology that resonates
with leadership. Build-in
success stories from other
federal agencies, if possible

Adoption efforts quickly
move out of pilot status and
into limited or long-term
efforts

Containerization Readiness Guide

Containerization Readiness Guide Page 26

Table 5. Container Transformation Maturity Matrix: Limited Production Migration

Typical Agency
Challenge

Recommended Action(s)
to Address Challenges

Outcome of Action

IT teams become
overwhelmed with the
increasing complexity of
container environment

Conduct market research on
and consider adopting
complementary
technologies such as a
service mesh and container
orchestration tools to help
manage a more complex
container environment

IT teams move recurring or
time-consuming tasks to
automated technologies.
Container ecosystem gains
resource efficiency from
new management systems,
freeing up teams to focus on
other value-add projects

Consistently running into
security policy roadblocks,
throwing off project and
migration timelines

Incorporate and adopt
principles from NIST
Publication 800-53 Rev 519

A proactive container
adoption plan and project
that aligns with existing
federal security policies,
limiting current and future
roadblocks

Heavy reliance on managed
services and difficulty
reducing costs now that
internal knowledge and
expertise is increasing

Explore opportunities to
reduce costs by moving to
CaaS/PaaS/IaaS offerings

Balanced plan of mixed
resources that maximize
cost and government
resources that gives
agencies flexibility to scale
at a reasonable cost

19 https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

Containerization Readiness Guide Page 27

Table 6. Container Transformation Maturity Matrix: Expansion

Typical Agency
Challenge

Recommended Action(s)
to Address Challenges

Outcome of Action

Lack of load balancing and
auto scaling as resources
and complexity grow

Expand the maturity of
existing container
orchestration tools and add
integration from security,
orchestration, scheduling,
policy, and governance for a
complete container
management ecosystem

Growing container
infrastructure that scales
with container expansion
projects and begins
integrating tools to create a
comprehensive container
management architecture

Limited automation
throughout container
ecosystem

Explore opportunities for
additional container
automation tooling

Teams see a decrease/same
amount of manual IT work,
even as container
complexity grows

Difficulty adapting to
different cloud service
providers and infrastructure
(AWS, Azure, Google, etc.)20

Ensure that there is mastery
through one vendor/provider
before continuing onto
others

Increased confidence in
adopting containers for a
specific vendor/provider

Lack of movement to
containers for legacy
applications

Conduct change
management efforts to
demonstrate ROI and
benefits (use existing case
studies) to Product
Managers, System Owners,
and executives

Product Managers, System
Owners, and executives that
are open to adopting
containers on legacy
applications and systems

20 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 28

Table 7. Container Transformation Maturity Matrix: Enterprise-wide Adoption

Typical Agency
Challenge

Recommended Action(s)
to Address Challenges

Outcome of Action

Difficulty maintaining
workforce skills with
constantly changing market
and industry products/tools

Consider investing in
repeatable industry training
programs for workforce
(AWS, Microsoft, Google)21

A highly trained and skilled
IT team that can proactively
identify and plan for cutting-
edge tooling to constantly
improve the state of
containers within the
organization

Limited automation of
optimization of systems
(self-healing, self-
configurable, infrastructure,
etc.)

Add additional tooling and
integrate all management
tools and solutions with a
complete Container
Management Architecture

Container ecosystem and
management system that
automates the health and
configuration of containers
to optimize the performance,
cost, and resource allocation
of a portfolio of applications

21 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 29

Appendix 2: Frequently Asked Questions

How should we pick our first project?

Any first step involves piloting your container technology prior to any production efforts.
Pilots should be formally sanctioned with a structured approach including pilot objectives
and formal testing criteria. Once your workforce’s technical maturity and confidence
increases, start with small projects to build and test environments or build simple
microservice-based applications within container environments.

How do we accelerate to multiple projects?

Build upon successes and knowledge acquired during your pilot and initial adoption stages.
Develop a standardized containerization pipeline, with consistent considerations for
governance and best practices. Concerns such as management systems and scheduling
should be accounted for in this pipeline. This will help ensure that multiple projects follow
the same trajectory and are optimized for successful implementation. Adopt a container-
first approach to deploy production once your agency moves past the initial maturity
stages.

We are hearing a lot about containers and automation. How do these concepts fit

together?

Automation principles such as IaC and DevOps exponentially decrease the time to
complete tasks, maintain consistency, and drastically increase productivity. The goal is to
reduce overhead and inefficiency of performing manual tasks for routine operations and
processes. The same concept applies to container adoption. Container orchestration
solutions automate many of the routine manual tasks that administrators would normally
undertake. These orchestration solutions automate the deployment, scaling, and
networking of containers. Without automation, container solutions would be unable to meet
the fast-paced process requirements of a DevOps pipeline with daily builds and
deployments. Truly efficient organizations leverage automation wherever possible to
improve ROI and use the full potential of the technology.

Where can we find training resources for container implementation?

There are many training resources available for container implementation and adoption.
Agencies can leverage basic free awareness training for containers and orchestration
solutions from websites such as edX.org or consult with their vendors for recommended
training partners. There are a range of paid training solutions available, ranging from low-
cost, self-paced training (from vendors such as Udemy or the Linux Foundation) to
instructor-led programs (from vendors such as Global Knowledge). GSA does not
recommend any specific vendor and recommends agencies research training resources
online and find training solutions that best fit their needs.

Containerization Readiness Guide Page 30

Where can we find more educational resources on containers and other cloud

and infrastructure topics?

Agencies can learn more about containers by visiting websites such as Container Journal to
stay updated on the latest developments in this quickly evolving space. Agencies can also
visit open-source project websites, such as Docker’s and Kubernetes’ home pages.
Furthermore, major cloud vendors that provide container services will communicate up-to-
date information related to services on their websites.

http://containerjournal.com/

Containerization Readiness Guide Page 31

Appendix 3: Generic Use Case

Figure 5. This flow diagram provides a notional pipeline from container development to testing to production, using Docker and
Kubernetes. Table 8 on the following page provides links to the numbered steps.

Containerization Readiness Guide Page 32

Table 8. Numbered steps of the genetic use case and corresponding sections

Step Corresponding Section

1 DevSecOps

2 Container Images22

3 Container Registries23

4 Notional Concept of Container Architecture Diagram

Appendix 4: Case Studies
As part of the development of the Container Readiness Guide, the team engaged in
discussions with members of the federal community. The four case studies below provide
non-attributional context for container efforts and specific best practices and lessons
learned during planning, development, and implementation phases.

Case Study 1: Cabinet-Level Federal Agency Container Journey
Overview of Case Study and Project Timeline
A large, cabinet-level federal agency with multiple components is in the process of
developing a pilot and proof of concept container effort. In June 2019, a small team within
the agency began working on the concept of building and utilizing containers to advance
the agency’s IT environment. In June 2019, an official proof of concept effort came
together, and execution of the project began in September 2019.

Development Specifics
The team used a .Net C# Application for the initial proof of concept. A team of two, one
developer and one administrator, conducted initial container efforts in a lab environment.
This effort has since expanded to include efforts outside of a lab environment. The team
engaged industry partners to gather advice and resources for the container journey. Today,
the team is envisioning a container image repository and adding additional container
efforts into agency-wide IT planning and strategy.

Best Practices and Lessons Learned from Case Study 1:
Define the Scope and Requirements Early and Dedicate Time Upfront - The team stressed
the lesson learned to spend more time upfront dedicated to the definition and development
of the scope, and to the requirements of the proof of concept and pilot efforts. Several

22 Figure 5 uses a Docker container image.
23 Figure 5 uses Docker registries for development, testing, and production.

Containerization Readiness Guide Page 33

instances arose that could have been clarified in initial scoping efforts, costing the team an
estimated two to three weeks in excess time.

Hold Leadership Conversations Early and Often - The team underestimated the
conversations that needed to occur with leadership, as containers were a much different
conversation than VMs. The team recommended that discussions with leadership about
Docker and/or Kubernetes should start with a conversation about new and different
platforms. The team also recommended initial component leadership discussions scoped
around an overview on containers, container use cases, and lessons learned from other
agencies to establish the rationale for why containers are necessary.

Standardize and Streamline Cross-Environment Solutions - The team wanted to create a
solution that worked across their existing environments: AWS, Azure, and Google.24 At
times, they felt there were too many choices, and a streamlined or recommended solution
may have been easier to follow and implement. The team recommended choosing just one
environment to work at first, and then expanding efforts to include multi-environments in
the future.

Understand NIST 800-190 (Application Container Security Guide) First - Understanding
this guide and documentation was critical to the effort. Security countermeasure efforts
were particularly taxing, resulting in a lot of back-and-forth with the security team. It would
have been helpful to have the entire team understand the content of this document first.
The team strongly recommended other agencies do the same.

Case Study 2: Cabinet-level Federal Agency Application Container-
based Platform
Overview of Case Study and Project Timeline
A large, cabinet-level agency with multiple components began its container journey in
2016. The agency encountered an issue in which the existing hosting provider removed
some of its websites. To mitigate this issue, the team turned to a container-based platform
to host these sites. The team went enterprise-wide in 2018 after developing a successful
proof of concept. This effort was conducted even before Kubernetes was available to the
marketplace, and, while some of the tools are insufficient for today’s purposes, the
principles remain the same.

Development Specifics
The team utilized their existing knowledge and strengths and chose Drupal as the platform
for the container effort. A team of six engineers provided support for the first two years. As
the platform matured to an enterprise-wide solution in 2018, more support was added.

24 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 34

Today, the Drupal platform hosts many of the agency’s websites, and has realized
significant cost savings for the agency by reducing hosting and maintenance costs.

Best Practices and Lessons Learned from Case Study 2:
Compose the Team Correctly - For this team, a large amount of success on
containerization efforts came from DevOps and development work. Fundamentally, it is
about investing in the team and/or contractors to ensure the team has the right people in
place. On the management side, strong upward communication of needs and requirements
was most effective. The team operated the platform with two very strong technical
personnel.

Narrow Scope of Effort - For example, if your team knows Drupal and Apache, use that as
your baseline for containerization. Do not upgrade or pivot to different services that your
team is unfamiliar with, which makes the entire container effort easier rather than adding
more “new” topics to the team’s list.

Procure the Right Contract Team - The team lead recommended building procurement
products that have constant evaluation of experience and skills to ensure that contractor
teams have the right mix of skills (across Docker, Drupal, and other cloud products). The
team does not recommend adding container efforts onto existing general IT and data
center contracts.

Consider Starting with Systems that Represent Lower Risk - The team lead recommended
that any team starting out on the container journey start with systems and applications
that have no Personally Identifiable Information (PII), as they generally will have lower risk.
The team considered themselves very pro-experimentation and configuration of systems
without PII. The team lead recommended giving agencies the space to experiment in a
lower risk environment by:

● Rearchitecting systems
● Decoupling systems to create microservices
● Using systems that your team is already familiar with

Case Study 3: Cabinet-Level Federal Agency Mobile Application
Platform
Overview of Case Study and Project Timeline
A cabinet-level federal agency developed a cloud-hosted system that provides the
infrastructure and hosting platform for Mobile Shared Services (i.e., common services used
for mobile applications) and web components of applications used on mobile devices. These
mobile applications connect directly to enterprise services.

Containerization Readiness Guide Page 35

Development Specifics
The agency developed fully containerized services running 53 mobile applications on 244
instances in AWS GovCloud using MongoDB, Oracle, and WebSphere.25 The
containerization effort expedited the migration and deployment process, but it added some
complexity to the effort. A pilot was initiated prior to the start of deployment.

The team developed the platform using Docker with AWS infrastructure (EC2 instances)
and AWS security products in place. The containers were deployed with Kubernetes
clusters resources that were allocated for each container group, and a load balancer
provided configuration and documentation.

Best Practices and Lessons Learned from Case Study 3:
Establish a High-Level Foundation to Lift and Shift “Fully Containerized” Applications
and Services - For this team, a large amount of success on containerization efforts came
from critical observations and the categorization of fully containerized applications and not
containerized applications of the 53+ production mobile apps. These efforts gave the team
a clear understanding of the degree of readiness, ranging from high to moderate to low.

Build a Basic Containerized Baseline First - The team recommends the following process
to build a containerized baseline early:

● Build application servers

● Build an environment using Docker Compose, or your applicable tool
● Establish reverse proxy

● Deploy in AWS

Establish Migration Waves - The team correctly identified a relatively high risk in
migrating 53+ applications/services in one coordinated effort, due to unavailability of
resources, incomplete migration artifacts, and other unresolved risk mitigations. The team
used a team of developers to migrate each app/service in a wave, reducing risk. Whether
waves or sprints, the team recommends pre-establishing a cadence to have a more modular
and low risk migration.

Establish Migration and Deployment Runbooks - The team developed multiple runbooks to
establish timelines, waves, and tasks, such as Firewall Rules, DNS, SQL connections, Image
Registry, Orchestration, Monitoring, and IAM Access. These runbooks helped standardize
procedures and operations.

25 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 36

Case Study 4: Cabinet-Level Federal Agency Enterprise-wide
Container Journey
Overview of Case Study and Project Timeline
A cabinet-level federal agency began its container journey with the goal of moving DevOps
to an enterprise-wide solution, OpenShift as a service to provide Container as a Service
offerings and support the enterprise-wide creation and adoption of containers.26 The
agency is rolling this effort into production in 2021.

Development Specifics
As mentioned above, the agency started with OpenShift. The team used a Git repository to
build a bridge between OpenShift and containers, allowing OpenShift to pull containers to
be used from the Git repository. The team used Kubernetes as the container management
platform. The team hopes to explore using Kubernetes to replace some Virtual Machines
for high density work in the future.

Best Practices and Lessons Learned from Case Study 4:
Large Discrepancy Between Existing Skill Set and Optimization of Kubernetes Services -
Using and optimizing Kubernetes services requires a high level of skill and expertise. Most
of the federal workforce currently does not have a high enough level of expertise to
optimize Kubernetes benefits. The team recommends scaling efforts with Kubernetes to
match scaling skills and expertise, as to better realize Kubernetes benefits over time.

Enterprise-wide Adoption Challenges - Along the way, the team did encounter mission
areas/offices that had already procured SaaS solutions, particularly with IaC tools, and had
to account for these as they scaled to the enterprise.

Appendix 5: Example of the Operator Pattern
It’s simple to install tools and services, such as the Operator pattern, once Kubernetes is
installed. As shown on the following page, an Operator pattern simplifies a suite of
resources to support agile, DevOps, or data science teams from the command line (Figure
6). Corresponding code can be found here. As an alternative, a GUI can be used for
installation.

26 Any references to vendors do not constitute an endorsement of their services.

https://github.com/Wildertrek/Open_Container_Platform/tree/main/code/odh_install

Containerization Readiness Guide Page 37

Figure 6. In the Red Hat OpenShift Container Platform, the Open Data Hub Operator installs
other Operators, which have various Pods/containers that are automatically installed for use
in AI/ML/data operations.27

27 Any references to vendors do not constitute an endorsement of their services.

Containerization Readiness Guide Page 38

Appendix 6: Additional Resources

Security Resources
Containers, being relatively new, are of interest to attackers. Addressing security challenges at defined levels of container
creation and potential threats from the perspective of a well-defined framework is valuable. The table below is a draft
mapping of threat-to-container based on the MITRE ATT&CK framework. The MITRE ATT&CK framework evolved out of
Microsoft’s Threat Matrix for Kubernetes, and is an evolving resource for container threat analysis. Cells in Green are proposed
technologies and sub-technologies.

Initial
Access

Execution Persistence Privilege
Escalation

Defense
Evasion

Credential
Access

Discovery Impact

Exploit Public-
Facing
Application

Container Service Implant Internal
Image (NAME
CHANGE)

Escape to Host Build Image on Host Brute Force Container
Resource
Discovery

Endpoint Denial
of Service

External Remote
Services

Deploy Container Scheduled Task/Job Scheduled Task/Job Deploy Container Brute Force: Password
Guessing

 Network Denial
of Service

Valid Accounts Scheduled Task/Job Scheduled Task/Job:
Container
Orchestration Job

Scheduled Task/Job:
Container
Orchestration Job

Masquerading Brute Force: Password
Spraying

 Resource
Hijacking

Valid Accounts:
Local Accounts

Scheduled
Task/Job: Container
Orchestration Job

Valid Accounts Valid Accounts Masquerading:
Match Legitimate
Name or Location

Brute Force: Credential
Stuffing

 User Execution Valid Accounts:
Local Accounts

Valid Accounts:
Local Accounts

Valid Accounts Unsecured Credentials

 User Execution:
Malicious Image

 Valid Accounts:
Local Accounts

Unsecured Credentials:
Credentials in File

 Unsecured Credentials:
Container API

https://medium.com/mitre-engenuity/update-help-shape-att-ck-for-containers-bfcd24515df5
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

Containerization Readiness Guide Page 39

Notional Concept of Container Architecture Diagram

Figure 7. This container architecture diagram highlights the advantages and benefits of a service mesh in managing container

instances and optimizing the health and performance of client applications and containers.

Containerization Readiness Guide Page 40

Additional Resources List
● DevSecOps: Slaying the Myths of Container Security
● Docker Security Page
● Securing a Kubernetes Cluster
● NIST SP 800-190, Application Container Security Guide
● NIST SP 800-125, Guide to Security for Full Virtualization Technologies
● NIST SP 800-125A, Security Recommendations for Hypervisor Deployment (Second

Draft)
● NIST SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM)

Protection
● DoD Enterprise DevSecOps Reference Design
● DoD Enterprise DevSecOps Reference Design: CNCF Kubernetes
● DoD/DISA Container Image Creation and Deployment Guide
● Defense Security/Cybersecurity Authorization Working Group (DSAWG) DevSecOps

Kubernetes Matrix Comparison
● DoD Enterprise DevSecOps Initiative (DSOP) Documents

https://blog.sonatype.com/devsecops-slaying-the-myths-of-container-security
https://docs.docker.com/engine/security/
https://kubernetes.io/docs/tasks/administer-cluster/securing-a-cluster/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-190.pdf
https://doi.org/10.6028/NIST.SP.800-125
https://csrc.nist.gov/publications/detail/sp/800-125A/draft
https://csrc.nist.gov/publications/detail/sp/800-125A/draft
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf
https://software.af.mil/wp-content/uploads/2021/05/DoD-Enterprise-DevSecOps-Reference-Design-v2.0-CNCF-Kubernetes.pdf
https://software.af.mil/wp-content/uploads/2020/11/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release-1.pdf
https://repo1.dso.mil/dsawg-devsecops/kubernetes-srg/k8-srg-artifacts/-/blob/master/kubernetes-readiness-dod.md
https://repo1.dso.mil/dsawg-devsecops/kubernetes-srg/k8-srg-artifacts/-/blob/master/kubernetes-readiness-dod.md
https://software.af.mil/dsop/documents/

	Structure Bookmarks
	

